Machine Learning versnelt herkenning ziekte van Sjögren

Sjögren

De ziekte van Sjögren is lastig te herkennen in de huisartsenpraktijk. Dit komt omdat de verschijnselen en symptomen sterk verschillen tussen personen. Dankzij de inzet van machine learning is het mogelijk om potentiële patiënten vroegtijdig te herkennen. Daarbij worden algoritmes ingezet die gebruikmaken van data uit elektronische patiëntendossiers.

Dit blijkt uit onderzoek van het Nivel en internationale collega’s uit het Europese HarmonicSS project. Het is onlangs gepubliceerd in het wetenschappelijke tijdschrift BMC Primary Care.

Vroegtijdig

De ziekte van Sjögren is een onder-gediagnosticeerde, langdurige auto-immuunziekte die de vochtproducerende klieren van het lichaam aantast. Vaak duurt het lang voordat deze patiënten worden doorgestuurd naar een specialist en een uiteindelijke diagnose krijgen. Hierdoor kunnen ze niet vroegtijdig behandeld worden. Terwijl dit juist van groot belang is voor deze patiënten en zorgt voor een betere kwaliteit van leven.

Eerste stap

Machine learning, een methode om met behulp van een algoritmes patronen te vinden in grote hoeveelheden data, draagt bij aan een vroegtijdige herkenning van mogelijke patiënten met de ziekte van Sjögren. Dit is een eerste stap richting een beslissingsondersteuningssoftware om huisartsen te ondersteunen bij het herkennen van Sjögren patiënten.

Algoritmes testen om patiënten te herkennen

De algoritmes maken gebruik van geanonimiseerde data die afkomstig zijn van elektronische patiëntendossiers (EPD’s) van huisartsen. De algoritmes filteren patiënten die mogelijk de ziekte van Sjögren hebben op basis van de beschikbare gegevens, zoals medische voorgeschiedenis, leeftijd, aantal consulten, medicatiegebruik en geslacht. We testten welk algoritme het beste in staat was om mogelijke patiënten te herkennen.

Algoritme trainen en valideren

Dit algoritme zou uiteindelijk kunnen worden toegepast in de klinische praktijk. Voordat dit zover is moet het echter eerst worden geoptimaliseerd en dit kan door het te trainen en valideren met andere datasets. Daarnaast is het van groot belang dat huisartsen betrokken zijn bij het verder optimaliseren van het algoritme en het ontwikkelen van mogelijke beslissingsondersteuningssoftware zodat het goed aansluit bij hun wensen.

Gerelateerde berichten...

X